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Phosphorylations control all aspects 
of vasodilator-stimulated phospho-

protein (VASP) function. Mapped phos-
phorylation sites include Y39, S157, S239, 
T278, and S322, and multiple kinases 
have been shown to mediate their phos-
phorylation. Recently, Protein Kinase 
D1 (PKD1) as a direct kinase for S157 
and S322 joined this group. While S157 
phosphorylation generally seems to serve 
as a signal for membrane localization, 
phosphorylations at S322 or at S239 and 
T278 have opposite effects on F-actin 
accumulation. In migrating cells, S322 
phosphorylation increases filopodia 
numbers and length, while S239/T278 
phosphorylations decrease these and also 
disrupt formation of focal adhesions. 
Therefore, the kinases mediating these 
phosphorylations can be seen as switches 
needed to facilitate cell motility.

VASP Family Members—
Functions, Structural 

Composition, and 
Phosphorylation

VASP and other members of the Ena/
VASP protein family, such as mamma-
lian-enabled (Mena) and Ena-VASP-like 
(EVL) have been linked to many human 
diseases including cancer, thrombosis, 
cardiomyopathy, arteriosclerosis, and 
nephritis.1 Ena/VASP proteins link cel-
lular signaling pathways downstream of 
RhoGTPases to actin dynamics.2,3 Such 
Ena/VASP-regulated actin-related pro-
cesses include epithelial cell adhesion, cell 
polarity, cell motility, axon outgrowth 
and guidance, and pathogen F-actin tail 
formation.4-6

In epithelial cells, VASP contributes 
to cell–cell adhesions through regulation 
of actin polymerization and bundling. 
Similarly, in motile cells, VASP local-
izes to regions of dynamic actin reorga-
nization including focal adhesions and 
filopodia at the leading edge, where it 
contributes to F-actin filament elonga-
tion and bundling.7-9 VASP promotes 
F-actin stress fiber assembly and elonga-
tion by antagonizing the capping protein 
CapZ, reducing Arp2/3-mediated branch-
ing activities, promoting the transfer of 
G-actin bound to profilin at the barbed 
end of growing filaments, and increasing 
the bundling of filaments.2,10-12 Overall, 
this leads to longer, less-branched fila-
ments. Consequently, fibroblasts from 
VASP-knockout mice have thicker, more 
stable actin stress fibers and enlarged focal 
adhesions.13

VASP proteins consist of three con-
served domains, a N-terminal Ena/VASP 
homology-1 (EVH-1) domain, a poly-
proline region (PPR) and a C-terminal 
EVH-2 domain (Fig.  1A). While the 
EVH-1 domain mediates interactions 
with WASP, zyxin, and vinculin, the PPR 
mediates association with profilin, Src, 
and Abl. The EVH2 domain facilitates 
oligomerization and binding to G- and 
F-actin and is of imminent importance 
for VASP functions at the leading edge of 
cells.11,14-16 It maintains clustering of the 
barbed ends of actin filaments and orga-
nizes filopodia formation at the leading 
edge.17 The EVH2 domain also enhances 
actin polymerization in the presence of 
capping proteins at the barbed end.10

Phosphorylation events regulate most 
aspects of VASP localization and function. 
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For example, VASP phosphorylation 
can reduce its association with actin, has 
negative effects on actin polymerization, 
and modulates interaction with other 
proteins such as Abl and Src.18 However, 
binding of focal adhesion proteins to the 
EVH-1 domain and of profilin to the PPR 
domain is independent of phosphorylation 
of VASP.18,19 Several tyrosine, serine, and 
threonine residues have been identified by 
mass spectroscopy (summarized in www.
phosphosite.org). Five of these sites have 
been experimentally confirmed using site-
specific methods and/or phospho-specific 
antibodies. These phosphorylation sites 
include Y39, S157, S239, T278, and S322 
(Fig. 1). Altered functional consequences 
for cell motility have been attributed to 
their phosphorylation (a “phosphoryla-
tion” code for cell motility is shown in 
Fig. 1B), and this will be discussed in the 
following.

VASP Phosphorylation  
at S157—Signal for  

Membrane Localization

Phosphorylation at S157 abrogates 
interaction of VASP with the SH3 
domains of Abl, Src, and αII spectrin and 
controls cellular distribution of VASP.16,20 
In migrating cells, VASP phosphorylation 
at S157 provides a signal for membrane 

or leading edge localization,21,22 but has 
a minor impact on actin filament for-
mation or the G-actin/F-actin ratio.21 
S157 phosphorylation can be mediated 
through cAMP-dependent protein kinase 
(PKA) and cGMP-dependent protein 
kinase (PKG).23 However, in response to 
serum stimulation leading to actin fila-
ment elongation, VASP phosphorylation 
at S157 is independent of PKA and PKG, 
but dependent on PKC.24 Recently, it was 
shown that PKD1 is also a direct kinase 
for S157.22 Moreover, other stimuli such as 
PMA and thrombin that regulate VASP 
via PKC are upstream activators for PKD1. 
Additionally, thrombin-mediated phos-
phorylation of VASP also is dependent on 
ROCK1. Since PKC and ROCK1 have 
been shown to be upstream of PKD1 in 
RhoA signaling pathways, it is very likely 
that PKC-dependent phosphorylation of 
VASP is mediated through PKD1.25,26

Following S157 phosphorylation, addi-
tional phosphorylation events can diverge 
the functions of VASP at the leading edge 
of migrating cells.

Kinases that Additionally 
Phosphorylate VASP  

at S239 and T278

Multiple kinases, including PKA, 
PKG, and AMP-activated protein kinase 

(AMPK) phosphorylate VASP at S157, 
S239, and T278.27-29 Often phosphoryla-
tion of T278 requires prior phosphoryla-
tion of VASP at S157 and S239. However, 
the ribosomal S6 kinase 1 (RSK1) interacts 
with VASP and phosphorylates it specifi-
cally at T278 without affecting S157 and 
S239 phosphorylation.30 Phosphorylation 
of both S239 and T278 has been linked 
to altered cell growth, cell adhesion, and 
cell motility. For example, phosphoryla-
tion of VASP by PKA in vitro abolished 
VASP anticapping activity,10 regulated 
filopodia formation,6 but also correlated 
with membrane ruffle formation and che-
motaxis.31 PKG phosphorylation of VASP 
at S157, S239, and T278 disrupted Rac-
1-dependent focal adhesion assembly.32 It 
further reduced the number of membrane 
protrusions and caused rounding of cells. 
A VASP.S239D mutant also mainly was 
enriched in the cytosol indicating that 
S239 phosphorylation may prevent bind-
ing to actin fibers.33 In summary, phos-
phorylations at S239 and T278 impair 
F-actin accumulation21 and suppress num-
ber and length of filopodia.34

Kinases that Additionally 
Phosphorylate VASP at S322

In contrast to phosphorylations at 
S239 and T278 that impair F-actin 

Figure 1. VASP domains, interacting proteins, phosphorylation sites, and upstream kinases. (A) VASP consists of a WH1/EVH1 domain (aa2-aa113), a 
prolin-rich domain (aa118-aa216), and an EVH2 domain (aa225-aa377). The EVH1 domain interacts with WASP, vinculin, zyxin, LPP, and actA; the prolin-
rich (PR) domain with profilin and SH3 domains of Abl and Src; the EVH2 domain binds to F- and G-actin, but also is required for tetramerization of VASP. 
Multiple phosphorylation sites have been mapped including Y39 (phosphorylated by Abl) in the EVH1 domain, S157 in the PR domain (mediated by PKA, 
PKG, and PKD1), as well as S239 and T278 (mediated by RSK1, PKA, PKG, and AMPK, as indicated) and S322 (mediated by PKD1 and AMPK) in the EVH2 
domain. (B) The VASP “phosphorylation code” with respect to its functions in regulating cell motility. Phosphorylation at Y39 decreases localization at 
the focal adhesions. Phosphorylation at S157 mediates membrane localization. Additional phosphorylation at S322 mediates F-actin accumulation and 
increases numbers of filopodia, while additional phosphorylation at S239 (and phosphorylation at T278) prevents F-actin bundling, decreases F-actin 
accumulation and decreases filopodia formation.
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accumulation,21 S322 phosphorylation has 
been shown to increase F-actin accumu-
lation.22 S322 is a newly identified phos-
phorylation site in the EVH-2 domain 
that is phosphorylated by PKD1 and 
AMPK, which share the same substrate 
motif.22,35

Activities of PKD family members 
are regulated by RhoGTPases.36,37 For 
example, PKD1 is negatively regulated by 
Rac1, a driver of actin reorganization and 
leading edge progression, and activated 
by RhoA, a driver of filament formation 
and bundling.26,38,39 When activated by 
RhoA, PKD1 interacts with F-actin,40 
negatively regulates barbed-end forma-
tion and F-actin re-organization at the 
leading edge,41,42 and stabilizes F-actin 
filaments.22 In response to active RhoA, 
PKD1 phosphorylates VASP at two ser-
ine residues, S157 and S322, but not at 
S239. Phosphorylation at S322 alters 
VASP binding to F-actin filaments.35 
Combined phosphorylation of VASP at 
S157 and S322 leads to a translocation of 
VASP from focal adhesions to the lead-
ing edge region.22 Consequently, PKD1-
mediated phosphorylations at both S157 
and S322 increased stress fiber forma-
tion and resulted in filopodia formation. 
In presence of active PKD1, the number 
and length of filopodia was dramatically 
increased,22 suggesting that PKD1 is part 
of the process leading to both filopodia 
formation and extension. However, when 
PKD1 activity was persistent or driven by 
a constitutive signal this led to membrane 
ruffling and decreased cell migration.22 
Phosphorylation at S322 also affects the 
epithelial phenotype, since inhibition of 
phosphorylation at this site results in accu-
mulation of VASP at cell–cell contacts 
and increased cell–cell adhesion.35

No homolog sites to S322 have been 
found in Mena or EVL. However, PKD1 
interacts with and phosphorylates EVL-1, 
a splice variant of EVL (Ena/VASP-like 
protein), at S345 in the EVH2 domain. 
This site is conserved in human and 
mouse, but not rat EVL-1.43 Moreover, 
the PKD1 phosphorylation sites in EVL-1 
(S345) and VASP (S322) have similar 
outcome. Like VASP, when phosphory-
lated by PKD, EVL-1 supports filopodia 
formation. Consequently, phosphorylated 
EVL-1 is located at the filopodial tips, 

ruffling lamellipodia, and at cell–cell 
contacts.43

Phosphorylation at Y39  
and Potential Function  

in Cell Migration

Another phosphorylation of VASP is 
mediated by the tyrosine kinase Abl. Abl 
interactor- 1 (Abi-1) promotes the interac-
tion between Abl and Ena/VASP proteins 
and mediates phosphorylation of VASP 
by Abl at Y39.44,45 Abl also phosphory-
lates other members of this protein fam-
ily, including Mena at Y296.44 Another 
substrate of Abl is lamellipodin (Lpd) and 
its phosphorylation recruits Ena/VASP 
proteins (Mena, VASP, EVL) to the lead-
ing edge of cells. Signaling through c-Abl, 
VASP and lamellipodin  mediates dorsal 
ruffling of fibroblasts and regulates cell 
motility.46 The regulation of VASP by Abl 
is interesting in the context that Abl is also 
a kinase that can phosphorylate PKD1 
and lead to its activation in response to 
oxidative stress.47,48 Therefore, it will be 
interesting to determine the contribu-
tion of Y39 phosphorylation of VASP to 
PKD1-mediated regulation of VASP.

Expression and Phosphorylation 
Status of Ena/VASP Proteins as 
Marker for Tumor Progression

The Ena/VASP family members are 
differentially expressed in cancer. Mena is 
upregulated in invasive mammary tumor 
cells,49 and overexpressed in benign lesions 
of the breast with a high risk of transfor-
mation,50 and in over 70% of primary 
breast cancers.51 Overexpression of Mena 
in Her2-positive cancers decreases overall 
patient survival.52 Increased expression of 
Mena was also shown for colorectal car-
cinomas and correlated with advanced 
TNM stages.53 In these cancers, upregu-
lation of Mena mainly occurred in the 
invasive front, where a transition from a 
glandular structure to single invasive cells 
occurred. More recent data suggest that 
Mena is alternately spliced to produce an 
invasion-promoting isoform.54,55

In breast cancer cells, expression of 
EVL-1 leads to increased actin bundling 
and suppression of protrusive activity and 
cell motility.56 Consequently, in samples of 

human breast cancer, decreased expression 
of EVL-1 correlates with high invasiveness 
and poor patient outcome.56

In contrast to Mena and EVL-1, VASP 
expression is generally high in both cancer 
and normal tissue. Only in lung adenocar-
cinomas increased VASP expression was 
described when compared with normal 
epithelium.57 However, a random homo-
zygous knockout approach in NIH-3T3 
cells suggested an rather inhibitory role 
for VASP on soft agar colony and tumor 
formation.58 Thus, VASP expression lev-
els alone may not serve as good predictive 
tumor markers. S157 phosphorylation of 
VASP has been suggested as a marker for 
prostate cancer cell motility and poten-
tial of metastatic progression.59 However, 
using phosphorylation of S157 solely as a 
marker needs to be pursued with caution, 
since additional phosphorylations may 
direct to opposing effects for the cell’s 
potential to migrate, invade, and metas-
tasize. While so far no data are available 
correlating the S322 or the S239/T278 
phosphorylation status with tumor pro-
gression, it was shown that the phosphory-
lation status of VASP at S239 can be used 
as endogenous cellular biomarker for anti-
cancer agents that cause cGMP-mediated 
apoptosis in colon cancer.60

Conclusions

Although a multitude of phosphoryla-
tion sites and upstream kinases of VASP 
have been described, the code by which 
they regulate VASP cellular localization 
and function is not fully understood. In 
migrating cells, phosphorylation of VASP 
at S157 drives it to the leading edge. 
Further function is dependent on addi-
tional phosphorylations. While a RhoA-
PKC-PKD1 pathway leads to additional 
phosphorylation at S322 and mediates 
F-actin filament elongation and accumu-
lation, activation of PKG impairs serum- 
and RhoA-mediated actin filament 
accumulation through phosphorylation at 
S239 and T278.21,28 Consequently, phos-
phorylation of VASP by PKG suppresses 
filopodia formation,34 while phosphoryla-
tion by PKD1 leads to increased number 
and length of filopodia.22 In the future, 
to fully understand the phosphorylation 
code that determines VASP function, 
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the phosphorylation status at all of the 
mapped sites including Y39 need to be 
determined for each known stimulus and 
upstream kinase and needs to be corre-
lated with localization and outcome. Once 
these phosphorylation patterns are fully 
mapped, definitive conclusions may be 
drawn of how phosphorylations of VASP 
affect cell motility and how this knowl-
edge may be used to predict progression 
of cancer.
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